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Abstract—An expeditious synthesis of a cyclodextrin with three pairs of functionalities on its primary rim is presented. Compared to
the previous one, this improved synthetic route yields the product in four steps and 70% yield, instead of six steps and 35% yield; it
also bypasses two metathesis reactions and avoids the use of tin reagent.

© 2006 Elsevier Ltd. All rights reserved.

Given their lampshade shape and multi-functionality,
cyclodextrins (CDs) have long been pointed out as
potential artificial enzymes.! The fulfilment of this goal
critically depends on the effective differentiation of the
various hydroxyl groups; indeed, as soon as efficient
methods became available, they have been exploited to
build up enzyme models.> The current methods give
access to homo-mono-, bi- or tri-functionalised CDs.3
A much more difficult challenge consists in their efficient
hetero-oligo-functionalisation. A few methods of
hetero-bi-functionalisation are now available;* among
them, we have recently discovered a process of double
hetero-tri-functionalisation of the primary rim of
CDs.>¢

Our method originates in the understanding of a
remarkable de-O-benzylation reaction promoted by dii-
sobutylaluminium hydride (DIBAL-H) that allows a
very efficient access to diol 1 based on the high sensitiv-
ity of the reagent to steric hindrance.” A so-called bas-
cule-bridge strategy was then delineated to yield, in six
steps and 35% yield, a CD 7 with three pairs of function-
alities on its primary rim.> Those steps include the cap-
ping of the CD via bis-allylation of CD 1, and
subsequent ring-closing metathesis (RCM) of CD 2 into
capped-CD 3. The change in steric hindrance on the pri-

Keywords: Aluminium; Diisobutylaluminium hydride (DIBAL-H);

Cyclodextrins; Selectivity.

* Corresponding author. Tel.: +33 01 44 32 33 35; fax: +33 01 44 32 33
97; e-mail: sollo@ens.fr

0040-4039/$ - see front matter © 2006 Elsevier Ltd. All rights reserved.

doi:10.1016/j.tetlet.2006.04.065

mary rim of the CD induced by this capping allows a
remarkable regioselective de-O-benzylation. The formed
diol 4 is protected by silyl groups, and the allyl protec-
tion is restored through ring-opening metathesis
(ROM) to yield CD 6. Compound 7 can then be
obtained by de-O-allylation. We also recently discovered
that it is possible to shorten this synthesis via a one step
Pd-catalysed formal reduction of the unsaturated cap in
5 into the desired diol 7.> We would now like to disclose
an expeditious synthesis of CD 7, also based on the same
concept, that is to say the regiodirecting role of a cap
(Scheme 1).

Our original capping strategy was based on the RCM
reaction; we now took advantage of the capping reac-
tion described by Bols et al.,” using a slightly different
protocol to introduce the methallyl function.! The
previously observed regioselective de-O-benzylation of
CD 3 was due to a change induced by the tetracarbon-
ated capping; we thus anticipated a similar reactiv-
ity with methallyl capped-CD 9. Upon reaction with
DIBAL-H, capped-CD 9 indeed nicely afforded diol 10
as a single product in 90% yield,'"° hence demonstrating
the compatibility of this cap with our methodology
(Scheme 2).

We next had to show that this methallyl-cap could also
play the role of a temporary protecting group and be
efficiently cleaved. For this purpose, we used Pd® chem-
istry. We envisaged to produce a symmetric m-allyl from
a methallylic diether in the presence of a Lewis acid; its
reduction would regenerate a methallyl ether, which in
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Scheme 1. Synthesis of the triply bifunctionalised CD 7. Reagents and conditions:

(1) AllBr, NaH, DMF, rt, 1 h, 91% (ii) Grubbs', CH,CL, reflux,

1.5 h then Pb(OAc)4, rt, 3 h, 92%; (iii)) DIBAL-H, toluene, 50 °C, 1 h, 84% ; (iv) TBSOTT, pyr, CH,Cl,, rt, 2 h, 95%; (v) Grubbs', CH,=CH,, CH,CL,
rt 3 days then Pb(OAc)4, rt, 3 h, 70%; (vi) Pd(PPh;)s, ZnCl,, BusSnH, THF, reflux, 12 h, 75%.
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Scheme 2. Synthesis and regioselective de-O-benzylation of capped-CD 9. Reagents and conditions: (i) 8, NaH, rt, 2 h, 92%; (ii) DIBAL-H, toluene,

50 °C, 1 h, 90%.
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Scheme 3. Pd-catalysed cap-removal.
its turn is deprotected according to the same mechanism S o6 B0
to afford the two alcohols ROH (Scheme 3). BnO 5 Togém BnO O o o %Bn
OBn
OTBS Oorss

Hence, CD 10 was first sﬂylated into CD 11 and submit- 90 iiorii e
ted to the action of Pd” in the presence of zinc chloride — . BnB
and tributyltin hydride (see also Scheme 1) to afford the TE’500 UESS,
desired CD 7 in 67% yield. Since the drawback of this B1ON0Q omosn BrONG mosn
protocol being the use of tin derivatives which are toxic 0BnBnO. A 0BnBnO A
and always difficult to eliminate, we decided to use tri- " 7

ethylsilane instead. The simple replacement of tin hy-
dride by the silane in the same protocol nicely afforded
the desired CD 7 in 88% yield.!? It is worth noting that
the use of BF;-OEt,, instead of zinc chloride, only pro-
duced the desilylated compound 10 (Scheme 4).

Scheme 4. Synthesis of the triply bifunctionalised CD 7. Reagents and
conditions: (i) TBSOTS, pyr, CH,Cl, rt, 2h, 95%; (ii) Pd(PPhs)y,
ZnCl,, Bu;SnH, THF, reflux, 12h, 67% ; (i) Pd(PPhy),, ZnCl,,
Et;SiH, THF, reflux, 6 h, 88% ; (iv) Pd(PPhs),;, BF3-OEt,, Et;SiH,
THF, 0°C, 3 h.
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In conclusion, we now offer a very efficient entry to the
triply modified CD 7, paving the way to its further use.
Compared to our previous protocol,>® it is operation-
ally much simpler, higher yielding (70% overall yield, in-
stead of 35%), and circumventing the use of expensive,
unhandy and toxic reagents.
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